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Abstract

Typing systems driven by noninvasive electroencephalogram (EEG)-based brain-
computer interfaces (BCIs) can help people with severe communication disorders
(including locked-in state) communicate. These systems mainly suffer from lack
of sufficient accuracy and speed due to inefficient querying to surpass a hard pre-
defined threshold. We introduce a novel recursive state estimation framework
for BCI-based typing systems using active querying through sequences of stimuli
and stopping criterion. Previously, we proposed a history-based objective called
Momentum which is a function of posterior changes across sequences. In this paper,
we first extend the definition of the Momentum objective and we propose a unified
framework that employs this extended Momentum objective both for querying and
stopping. We show that this framework leads to significant improvement in the
accuracy/speed ratio in human intent estimation for BCI-based typing systems. To
provide a practical example, we employ a language-model-assisted EEG-based BCI
typing system called RSVP Keyboard. Our results show the proposed framework
on average improves the information transfer rate (ITR) and accuracy at least 52%
and 8.7%, respectively, when compared to alternative approaches, such as random
or mutual information methods.

Keywords: Recursive state estimation, Active querying, Stopping criterion, BCI typing interface,
RSVP Keyboard.

1 Introduction

Noninvasive electroencephalography (EEG)-based brain-computer interface (BCI) typing systems
are designed for people with limited speech abilities to establish an alternative communication tool.
These systems require presentation (mostly in visual forms) of sequences of stimuli (e.g. a set of
symbols from the English alphabet) to induce changes in the EEG of the user to infer the intended
symbols [1, 2]. Due to the low signal-to-noise ratio characteristics of the recorded EEG in response
to the presented stimuli, generally in order to improve the accuracy of the user intent inference,
these systems require repetition of sequences of symbols until a certain confidence level is reached.
Moreover, language models (LM) are used to further improve the typing performance of such systems
through the fusion of EEG and LM evidences to make the final decision on the user intent [1, 2].

Because typing process needs repetition of multiple sequences in EEG-based BCI typing systems,
the user intent inference can be formulated as a recursive state estimation (RSE) problem assuming
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that the unknown state represents the intended symbol by the user [3, 4]. The formulation is recursive
because, these systems try to make an inference after each sequence. One approach to collect evidence
for each correspondent letter, is presenting the entire alphabet in the stimuli. However, by nature,
languages are structured and not every possibility is equally likely and hence repeating the entire
alphabet is not efficient. Therefore, a subset query selection is usually preferred to make these systems
more practical and real-world-worthy. In this scenario, the system is tasked to decide on a subset
from the alphabet to update its belief over state estimates.

Query optimization for BCI typing systems is not a well-studied problem. To the best our knowledge,
there is a limited number of studies that addressed the query optimization problem for the BCI
typing system designs. Omar [5] proposed a posterior matching scheme for a typing task. Higger [3]
used maximum mutual information (MMI) coding for query selection to maximize the information
transfer rate (ITR) in the typing task. In the last study done by Moghadamfalahi [4], authors used
expected posterior maximization (EPM) for query selection for a BCI typing system. However, all
of these query selection methods result in the selection of the N-best stimuli based on the posterior
distribution [6, 7]. In this scenario, with respect to the current posterior distribution, letters are
selected with descending order of associated probability mass function. Choosing the N-best queries
based on the current belief (prior information), however, does not always provide the best performance
in RSE problems. Because, current belief may not be always trusted and may include misleading
information. In the case of the BCI typing systems, for instance, the current belief may be negatively
influenced by the prior information provided by a language model. The language model provides
probability values over the alphabet that is statistically learned from a dataset. As a matter of fact,
word choices are topic dependent and it is not possible for the statistical model to capture each
possibility. This yields some word choices to be statistically uncommon for the language model. If
the user intent (target state) is an uncommon phrase (e.g. an English word starting with letter X),
the prior behaves in an adversarial manner, causing a longer estimation session, or may lead to a
wrong state estimation due to limitations of EEG evidence such as noise and limited number of typing
sequences. Therefore, such BCI systems also require exploration beyond the current belief (posterior
probability over letters).

In addition, due to noisy measurements in BCI applications, e.g. EEG-based BCI, making confident
decisions about the user intent becomes a challenge. Accordingly, BCI typing systems typically
require excessive querying process to reach a pre-defined threshold to provide a minimum confidence
for every chosen letter. In RSE problems, to compensate for the detrimental effect of noise in
measurements, the confidence threshold is set to a high value to decrease ambiguity in the state
estimation. However, incremental gains over the posterior probability of a particular estimate come at
the disproportionately high expense of time and budget. For instance, in BCI typing systems, in order
to increase accuracy, the system repeats the presentation of stimuli multiple times, which translates to
reduced typing speed and user frustration. Moreover, the inclusion of backspace command in such
interfaces for error correction can exacerbate these issues. Therefore, when facing constraints for the
inference problem, a trade-off between accuracy and speed must be considered.

To address both challenges for query optimization and stopping of the decision process, in this
paper, we propose a new recursive state estimation framework that utilizes an evidence history-
based objective called Momentum. Previously, we have shown that including Momentum of states
in the stopping criterion of the estimation process provides a better accuracy/speed ratio in RSE
problems [8]. Moreover, in [9], we have shown that Momentum of queries can provide a trade-
off between exploration and exploitation during query selection by increasing the chance for the
unlikely queries to be selected compared to N-best approaches. However, since our previous approach
only considered non-zero Momentum for already queried stimuli. The selection of non-queried but
potentially intended state was significantly delayed. This can introduce a significant problem for
a typing interface that uses a language model. In this manuscript, we extend beyond our existing
approaches, redefine the Momentum to consider all the possible stimuli that can be used for querying
and propose a unified state estimation framework that utilizes the new Momentum objective both
for query selection and as stopping criterion simultaneously during recursive user intent inference.
To examine the performance of the proposed framework, we use an EEG-based BCI typing system
called RSVP Keyboard. We present typing performance results for both simulation and actual
human-in-the-loop typing schemes.
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2 Method

In BCI typing systems, the user has an intended phrase in mind. Estimating the intended symbol is
the smallest decision block in a BCI typing system. For the sake of simplicity in the application, in
such typing systems, users are instructed to type one symbol at a time. We refer to the user-intended
symbol (target which is the unknown state in the recursive state estimation) as σ which is an element
of a finite set of alphabet denoted by A. The BCI system proceeds with the estimation through a
sequential decision making process containing sequences indexed by s of multiple trials indexed by
i. In BCI designs, a trial is a finite-length window of EEG signal time-locked to the onset of a trial,
which is a visual stimulus (query). In the typing system, the system decides on a subset of queries
(symbols), Φs , {φ1

s, φ
2
s, ..., φ

K
s } where any φ ∈ A to present to the users. Here, K is the number

of trials in a sequence. After Φs is selected, the BCI system observes feedback from the user e.g.,
recorded EEG, εs , {ε1

s, ε
2
s, ..., ε

K
s } before moving on to the next sequence. Table 1 summarizes the

frequently used notation in this study.

Estimation of σ requires repetition of multiple sequences, the estimation process can be well formu-
lated in the recursive state estimation (RSE) framework as follows.

2.1 Mathematical Formulation of RSE Problem

Figure 1 shows the probabilistic graphical model proposed for an RSE problem for a BCI typing
system. Here, δs denotes the system’s state including the probability of all states at s-th sequence.
It should be noted that δ0 includes the prior information about the decision. δS is the BCI system
decision at the last sequence S. It is assumed that the system state represents the target state which
belongs to a finite discrete space. Although, the observation space is bounded and continuous. As
shown in Figure 1, the dynamics of the system state δs follows a Markov decision process (MDP),
which is similar to a Markov chain, except that the transition matrix depends on the actions taken by
the system at each sequence.

We can decompose the RSE problem into inference I and querying Q objectives. Using Bayesian
framework, the inference objective is function of the posterior probability, p(σ|ε,Φ,Hs), whereHs
is the history of previous EEG evidence and new (not observed) evidence ε. At query optimization
step, the system queries the environment until the inference constraints are satisfied. To extract
information from the observation, the system needs to explore various sequences. Accordingly, the
aim of the system is to query a subset of queries to estimate the state, which is the target letter.
Therefore, based on the collected evidence if a decision is not possible, the system selects a subset
of queries for the upcoming sequence to improve its confidence. The querying process is being
continued until the speller achieves a minimum confidence level required to type a symbol, i.e. τ .
This process is formulated by query optimization, which is defined as expected value of posterior
with respect to the prior distribution or expected posterior maximization (EPM) as follows.

(I) : σ̂ = arg max
σ∈A

p(σ|Hs)

s.t. p(σ|Hs) ≥ τ

(Q) : Φs+1 = arg max
Φ

Ep(σ|Hs)

[
Ep(ε|σ,Φ)

[
p(σ|ε,Φ,Hs)

]] (1)

In this equation the constraint in (I) plays the role of stopping criterion. At a sequence s it is possible
there exists no σ that satisfies the constraint and hence the system continues with recursions until
such candidate σ emerges. Since log(.) is a monotonically increasing function, the querying problem
in (1), can be written as:

Φs+1 = arg max
Φ

log

(
Ep(σ|Hs)

[
Ep(ε|σ,Φ)

[
p(σ|ε,Φ,Hs)

]])
(2)

Using Jensen’s inequality, the objective in (2) is bounded from below by,

log

(
Ep(σ|Hs)

[
Ep(ε|σ,Φ)

[
p(σ|ε,Φ,Hs)

]])
≥ Ep(σ|Hs)

[
log
(
Ep(ε|σ,Φ)

[
p(σ|ε,Φ,Hs)

])]
(3)
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Instead of maximizing the original Q objective in (1), we can optimize the lower bound in (3).

Φs+1 = arg max
Φ

Ep(σ|Hs)

[
log
(
Ep(ε|σ,Φ)

[
p(σ|ε,Φ,Hs)

])]
(4)

To simplify the querying objective in (4), Moghadamfalahi in work [4] approximated
Ep(ε|Φ)

[
p(σ|ε,Φ,Hs)

]
with a sub-optimal linear approximation around the mean, by assuming

concentrated-unimodal distribution condition over the p(ε|Φ), which are not necessarily valid as-
sumptions in many applications, such as EEG-based BCI systems with noisy measurement.

Instead of solving (4), we can consider another lower bound for fQ in (1), which is:

Ep(σ|Hs)

[
log
(
Ep(ε|σ,Φ)

[
p(σ|ε,Φ,Hs)

])]
≥ Ep(σ|Hs)

[
Ep(ε|σ,Φ)

[
log
(
p(σ|ε,Φ,Hs)

)]]
(5)

Minimizing the right term in (5) is identical to minimizing the conditional entropy H(σ|ε,Φ,Hs) or
maximizing mutual information I(σ, ε|Φ,Hs). Accordingly, query selection using mutual informa-
tion can be written as the following objective:

Φs+1 = arg max
Φ

I(σ, ε|Φ,Hs)
= arg max

Φ
−H(σ|ε,Φ,Hs) (6)

Before introducing the proposed framework, here, we present the following assumptions for the
proposed framework.

• Number of trials in a sequence is capped at K ∈ N, and the number of sequences is defined
as {j ∈ N | 0 < j ≤ S}, which implies that the stop action must be selected (a decision
needs to be made) in at most S sequences.

• After each sequence, EEG observations are only function of the user intent and the query
subset presented in that sequence. The observations are independent of the task history
Hs−1, such that,

p(εs|σ,Φs,Hs−1) = p(εs|σ,Φs)
p(εs|Φs,Hs−1) = p(εs|Φs)

• There is a prior information p(σ|H0) provided by the LM, conditioned on previously typed
symbols (if any).

• Independent evidence trials: The BCI system proceeds with the estimation through a
sequential decision making process containing sequences indexed by s of multiple trials
indexed by i. Observation corresponding to different trials in a sequence are independent
conditioned on the unknown state σ. Therefore the posterior probability at time s is written
as:

p(σ|εs,Φs,Hs−1) = p(σ|H0)
s∏
j=1

ti∏
i=1

p(εij |σ, φij)
p(εij |φij)

• Unimodality in evidence distributions: It is assumed that all observations originate from
two unknown unimodal probability distributions conditioned on state and query tuples: (i)
conditioned on target class (intended state), fσ∗,φi

s
, and (ii) conditioned on non-target class,

f 6σ∗,φi
s
.

• Each query subset includes a unique set of stimuli, i.e., ∀i 6= r ∈ {1, 2, · · · ,K}, φij 6= φrj .

• Estimability: We assume that there exists at least one query for any two states that enables
unique identification of the unknown state such that

∀a 6= b ∈ A ∃ φ s.t. fa,φ,(ε) 6= fb,φ,(ε) ∀ε

• Asymptotic convergence: Given the estimability condition, every state can be estimated by
sufficient number of queries. Additionally the set of queries φ1:j is not unique,

∀σi ∃ Φ1:j s.t. p(σ|ε1:j ,Φ1:j) ∈ {0, 1}
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2.2 Active Querying

In state estimation, mutual information is a measure of expected information gain with the current
belief (posterior) of an estimate. It can be observed that the posterior for the state is expected to
increase with further evidence observation, based on the estimability and asymptotic convergence
assumptions. Since mutual information is a submodular set function and observations within a
sequence are assumed to be independent, i.e. independent evidence trials assumption, the sequential
subset query selection can be achieved via a greedy approach by optimizing (6) for each query with
theoretical guarantees [10, 11]. Therefore, query selection objective can be reformulated for each
query as:

φis+1 = arg max
φ∈A

I(σ, ε|φ,Hs) (7)

It has been discussed in [9] that using greedy selections such as MMI or minimizing entropy may
be misleading especially if the intended symbol is highly unlikely for the LM (adversarial case).
Authors in [9] introduced a history-based objective called Momentum. The objective is a function of
the average posterior changes across sequences, i.e. m(φ|Hj), which is the summation of probability
displacement multiplied by the probability mass. This objective is used as a measure of speed
towards a specific estimate. Therefore, in a scenario where the true state has small initial probability
(e.g. due to the user aiming for a very unlikely letter/word/phrase), incorporating speed allows
up-and-coming-candidates, whose probability is steadily increasing sequence after sequence. This
includes the possibility that the correct state (letter) gets queried earlier in the process while its
absolute probability is relatively low in the alphabet and additionally its probability increments have
been in the positive direction. In the previous work [9], Momentum function was only computed
for previously queried states and its value has been set to zero if the state was not queried. In this
work this is extended to all possible states. To compute the posterior changes for all states, here the
Momentum objective is defined as:

M(φ|Hs) =
1

s

s∑
j=1

m(φ|Hj) (8)

where
m(φ|Hj) =

∑
σ∈A

p(σ|Hj−1)
[
log p(σ|εij , φ,Hj−1)− log p(σ|Hj−1)

]
(9)

It should be noted that the initial Momentum is zero for all symbols, i.e. m(φ|H0) = 0, ∀φ.

Accordingly, the query selection objective can be defined as combination of mutual information and
Momentum objectives in (7) and (8), respectively to balance between exploration and exploitation
including all states as follows:

φis+1 = arg max
φ∈A

I(σ, ε|φ,Hs) + λM(φ|Hs) , λ ≥ 0 (10)

where, λ is a tuning parameter that balances between mutual information and Momentum.

2.3 Improving Stopping Criterion

As we discussed in (1), in conventional RSE framework, the BCI system makes a decision when the
state posterior achieves a pre-set confidence threshold, τ . However, meeting this fix threshold as a
stopping of the estimation process may unnecessarily need more queries. The querying process is
costly, particularly in BCI applications that require several sequences in order to precisely estimate
the user intent. In [8], we have shown that using similar history-based objective, Momentum, the
system can achieve to the target state faster than the threshold-based approach. Accordingly, the
inference problem can be expressed as:

σ̂ = arg max
σ∈A

p(σ|Hs)

s.t. p(σ|Hs) + λM(σ|Hs) ≥ τ, λ ≥ 0
(11)

where

M(σ|Hs) =
1

s

s∑
j=1

p(σ|Hj−1)
[
log p(σ|Hj)− log p(σ|Hj−1)

]
(12)

and λ is a hyperparameter. Since, Momentum is function of the user intent σ, we do not have any
weighted average over p(σ|Hs).
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Algorithm 1 Active Recursive State Estimation for Letter Decision in BCI

1: initialize A, λ1, λ2 ∈ [0,∞), τ,K ∈ N
2: s← 0,Hs ← {H0}
3: stop← {0|∀σ ∈ A}
4: while x < τ |∀x ∈ stop do
5: A′ ← A
6: for i ∈ [0,K] do . Batch query selection
7: φis+1 ← arg maxφ∈A′ I(σ, εis+1|φ,Hs) + λ2M(φ,Hs) . (10)
8: A′ ← A′ \ {φis+1}
9: Φs+1 ← {φis+1|∀i ∈ [0,K]}

10: εs+1 observed evidence from the user for Φs+1 . EEG recording from BCI
11: Hs+1 ← Hs ∪ {εs+1,Φs+1} . Update History
12: s← s+ 1
13: stop← {p(σ|Hs) + λ1M(σ|Hs)|∀σ ∈ A} . (13)
14: σ̂ = arg max

σ∈A
p(σ|Hs)

15: return σ̂

2.4 Active RSE Framework for BCI-based Typing Systems

Finally, using the Momentum in both inference constraint and query optimization, the final RSE
framework can be presented as:

(I) : σ̂ = arg max
σ∈A

p(σ|Hs)

s.t. p(σ|Hs) + λ1M(σ|Hs) ≥ τ, λ1 ≥ 0

(Q) : φis+1 = arg max
φ∈A

I(σ, ε|φ,Hs) + λ2M(φ|Hs) , λ2 ≥ 0

(13)

The pseudocode of the proposed framework is demonstrated in Algorithm 1.

In the following sections, we will illustrate how using the introduced RSE framework can enhance
accuracy and speed in the BCI-based typing systems.

3 Experiment Design

As a BCI typing system, we use RSVP Keyboard, which is a language-model-assisted EEG-based
BCI typing interface. This typing interface uses RSVP paradigm that stands for rapid serial visual
presentation [1, 2]. It includes a finite set of symbols from the English alphabet together with symbols
corresponding to backspace and space, A = {A,B,C, ..., Z, _, <}, where _ and < represent space
and backspace, respectively. RSVP Keyboard system consists of the following main components:

Presentation: Controls the paradigm of visual stimuli presentation. The current system features
three presentation paradigms: (i) rapid serial visual presentation paradigm, (ii) row column flash
matrix presentation paradigm, and (iii) single symbol flash matrix presentation paradigm [12].
Figure 2a illustrates an example of keyboard presentation at each paradigm. In paradigm (i), a set
of pseudo-randomly ordered stimuli are presented on a pre-fixed location of the screen in a rapid
serial manner. Each stimulus is a trial. A set of trials which has been presented with no time gap in
between, is called a sequence. Every sequence contains only a single target stimulus. Time-series
analysis is used to identify the stimulus on which the attention (target) is placed on. In paradigm (ii),
there exits an R× C matrix of symbols. Typically, each row and column of the matrix is flashed in a
pseudo-random fashion, while the participants count the number of highlighted rows or columns that
include the target symbol. Paradigm (iii) has similar matrix presentation to paradigm (ii), with the
exception that in paradigm (iii) only single characters at each cell of the matrix are flashed (again in a
pseudo-random fashion).

EEG Feature Extraction: Collects EEG evidence and applies some preprocessing steps including
filtering, dimensionality reduction, etc. depending on the application. Since EEG signals are noisy
with very low signal-to-noise ratio (SNR), it is essential that the EEG signal features are extracted as
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evidence. In EEG-BCIs the primary interest of filtering is to extract the P300 components [1, 13, 14].
Typically, filtering part includes drift removal (frequencies « 1Hz) and a bandpass filter to remove the
artifact-related high frequency components in the measurement. After filtering, EEG is windowed
to extract the respective evidence at each channel for stimuli presentations. Time-windowed data
from different EEG channels is usually concatenated to obtain the EEG feature vector that has a
high dimension because of using a multi-channel measurement. Therefore, dimensionality reduction
using ICA or PCA is also needed [1]. Specifically, our system relies on reducing EEG time series
into one dimensional feature vector. Simultaneously, the system also tries to achieve maximum
separation between two classes as target and non-target respectively. Filtered multi-channel EEG data
time windows are passed through channel-wise principal component analysis where the outputs are
concatenated to an intermediate feature vector. We assume in each class, feature vectors are drawn
from a multivariate Gaussian distribution we use Regularized discriminant analysis (regularized
quadratic discriminant analysis [15]) that results in one dimensional representation of the signal.
RDA regularizes the covariance matrices of each data class. For a binary classification problem with
class notation k ∈ {0, 1}, let x = {x1, x2, · · · , xN} denote the N sample data with respective labels
y = {y1, y2, · · · , yN}. RDA involves two steps shrinkage and regularization, and these two steps
require sample mean and covariance estimates for class k.

Mk =
1

Nk

∑
i|yi=k

xi, Σk =
1

Nk

∑
i|yi=k

(xi −Mk)(xi −Mk)T

The shrinkage adjusts the covariance matrices as the following;

Σ̂k(γ1) =
(1− γ1)NkΣk + γ1

∑
kNkΣk

(1− γ1)Nk + γ1

∑
kNk

Observe in shrinkage parameter that γ1 ∈ [0, 1] adjusts the similarity between two class covariances
and γ1 = 1 leads to linear discriminant analysis (LDA). The regularization of the adjusted covariance
matrices with the identity matrix Ip, where p denotes covariance matrix dimension, is achieved
through;

Σ̃k(γ1, γ2) = (1− γ2)Σ̂k(γ1) + γ2
1

p
tr(Σ̂k(γ1))Ip

Here γ2 ∈ [0, 1] determines how circular the covariance matrix is. In inference, Gaussian distributions
with parameters (Mk, Σ̃k) for class k are used. In our system, parameters γ1, γ2 are collectively
optimized to maximize the average cross validation area under receiver operation characteristic
curve (AUC) with a equi-partitioned 10 folds. We refer readers to Orhan’s work [16] for a detailed
explanation and reasoning for the EEG feature extraction pipeline.

Language Model (LM): Provides the prior distribution that is used for computing the posterior
distribution of a symbol. The most widespread LM is the n-gram statistical models that estimate
the probability of a word given (n − 1) preceding words. In the current system, we are using an
Online-Context Language Model (OCLM) that provides prior distributions given EEG evidence as
part of our BCI system.

User Intent Detection (Inference): Estimate the intended user letter according to the EEG evi-
dence collected under specified presentation paradigm and prior knowledge provided by LM com-
ponent. EEG evidence typically is assumed to be a Gaussian process with unknown mean and
covariance, and the parameter estimation is required for BCI inference. In order to estimate the
posterior probability, the context prior p

(
σ|H0

)
is provided by the LM, which estimates the condi-

tional probability of every letter in the alphabet based on n− 1 previously typed letters in a Markov
model framework. Here, the BCI inference follows the introduced fI objective in (13) using an active
recursive state estimation framework.

Moreover, the described RSVP Keyboard system has three important system operation modes that
are utilized in most of BCI applications:

Calibration mode: During calibration, users are asked to pay attention to pre-defined target symbols
within randomly-ordered sequences to collect labeled EEG data. The data collected in this mode are
used in the estimation of class-conditional EEG evidence distributions and classifier parameters.

Copy phrase task mode: In this mode, users are presented with a set of pre-defined phrases. Each
phrase includes a missing word and the users are asked to complete the phrase by typing the missing
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word. This mode is designed to assess the system and the typing performance in terms of speed and
accuracy in the presence of a language model. Figure 2b shows an example of a user attending Copy
phrase task.

Simulation: This mode is basically a copy phrase task that is simulated without user intervention.
We use the proposed probabilistic simulation framework in [17], in which the Monte-Carlo sampling
method is used to draw samples from the class conditional distributions learned in the calibration
mode. This mode that could replicate the operational performance of the system, could really be
beneficial for evaluating new BCI designs and can report the possible system performance in terms of
speed and accuracy.

Typically the RSVP presentation paradigm has lower speed than the matrix presentation. Therefore,
for the experimental study, we only use RSVP paradigm to show the impact of the proposed framework
on the typing speed and accuracy. More detailed information about the RSVP Keyboard system can
be found in [1, 13, 14].

4 Results and Discussion

To assess the performance of the proposed query selection method, 10 healthy participants (six
females), 20-35 years old were recruited under an approved IRB to assess the performance of the
proposed system. EEG signals were acquired from 20 sensors according to international 10-20 system
locations: Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T4, T5, T6, P3, P4, O1, O2, A1 and A2.
A DSI-24 Wearable Sensing EEG Headset was used for data acquisition, at a sampling rate of 300
Hz with active dry electrodes. All participants performed the calibration session containing 100
sequences; each sequence includes 5 trials; and one trial in each sequence is the target symbol which
is displayed on the screen prior to each sequence (RSVP paradigm). The time interval between trials
is 200 ms. Optimal parameters for both target and non-target class distributions were learned using
the calibration data, which are used in simulation studies and copy phrase task.

After performing calibration session, all participants attended four copy phrase sessions. In copy
phrase sessions, users were asked to type the following phrases in a pseudo-randomly ordered fashion.

- "It is too hot."

- "They are happy."

- "I am an arctic explorer."

- "It occurred randomly."

- "He read the annals of US history."

- "She needs one month to convalesce."

Here, the target words were written in bold (with green color during the experiment). We have
attempted to pick different phrases with different difficulty levels in terms of prior probability
provided by the LM. For instance, words such as "too" or "are" are relatively easy to type. Because,
their initial symbol is very likely based on the LM prior. However, words like "convalesce" or
"occurred" are fairly difficult to type. It is important to adjust the phrase difficulty to correctly
assess the user performance and querying effects. The difficulty is measured by the confidence of the
language model on the target phrase both on the letter and word level. None of the given phrases
above is the likely candidate given the respective context with respect to the language model and
hence the experimental design avoids auto typing. On letter base evaluation, 10 out of 36 target letters
are the most likely candidates with respect to the language model yielding 28% accuracy in typing
letters. In our experiments all users surpassed this baseline, by minimum 58% as shown in Section 4.2.
Additionally, to quantify the importance of information obtained from the EEG signal, we present the
experimental results for one of the subjects for typing “are, annals, arctic, too, convalesce”. Here, the
blue bars show the prior probability provided by the language model and the red bars show the poster
probability of each letter. Differences between blue and red bars show the probability increment of
each letter due to EEG evidence (blue).

To have a comprehensive assessment, we examined the performance of the proposed RSE framework
for both simulation and real-time typing experiments.
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4.1 Simulation Experiments

To evaluate the empirical performance of the proposed query selection, a copy phrase task was simu-
lated using EEG data collected during the calibration sessions. Using class conditional distributions
fσ∗,φi

s
(target class) and f 6σ∗,φi

s
(non-target class), we used Monte-Carlo sampling method to draw

samples from class distributions. Figure 4 shows the simulation results for typing symbols ‘C’, ‘O’,
and first ‘N’ for phrase ‘SHE_NEEDS_ONE_MONTH_TO_CONVALESCE’ using four different
methods in typing including random, only Momentum-based objective, MMI, and the introduced
framework. For each simulation, the number of Monte-Carlo samples is chosen to be 500.

Figure 4 illustrates the average probability changes for the target symbol with different prior during
the RSE process using different estimation approaches. All results presented for two users with
different calibration performance; one with a higher calibration AUC, i.e. 0.82 and one with a lower
calibration AUC, i.e. 0.67. AUC is the area under the receiver operating characteristics curve. The
bar plot next to each plot shows the LM prior at the beginning of a decision cycle. For instance,
in Figure 4a it can be seen that the LM probability for ‘C’ is very low and it is not quite likely to
start a word with this letter. Accordingly, MMI method that is performing as N-best selection, is
highly influenced by the LM prior, needs more sequences to estimate the target symbol. Looking to
the performance of the Momentum approach, we can see that in the early sequences of the decision
process, this approach on average is faster than MMI to pick the intended symbol for the query
subset. Although, after some sequences, because of EEG measurement noise and miss-classification,
Momentum gets close to zero and could not pick the intended symbol. As expected, random method,
due to the random query selection and decision does not perform well likewise. Overall, the proposed
framework outperforms the other three methods in selecting the target symbols.

In Figure 4, we can also see that when there is a likely symbol like ‘O’, MMI method and the
proposed framework perform similarly in terms of learning the probability values of the symbols. By
comparing the simulation results of user 7 (with higher AUC) with user 1 (lower AUC), it can be
seen that all of the methods are faster for the user 7 with higher calibration performance due to larger
gap between fσ∗,φi

s
and f 6σ∗,φi

s
, which provides less miss-classification in the estimation process.

Another observation in Figure 4 is that for user 1 with lower performance where there is more overlap
between class conditional distributions, the proposed framework can estimate the target symbol quite
fast. However, it is more difficult for Momentum method to capture the target symbol. In such cases,
MMI method also requires more number of sequences for a precise estimation.

Figure 5 presents the average probability changes and accuracy as a function of number of sequences
for different discussed approaches. In this simulation, we used both conventional fix threshold and the
proposed Momentum-based criterion for each query optimization method. The pre-defined threshold
τ is 85%. The results for 500 Monte-Carlo simulation show that in all cases, the system can achieve
similar accuracy level using the Momentum-based stopping criterion. In all sub-figures, again we
visualized the results for user 1 and 7 with different typing performances. Figure 5a shows the
simulation results for random method. Due to the low AUC value for user 1, there is no stopping
point and the system continued querying until it reached the maximum number of sequences, i.e. 40
sequences. In Figure 5b Momentum method again could not precisely estimate the target symbol for
both users. Comparing results in Figure 5c and Figure 5d, we can observe that for both MMI method
and proposed framework, the Momentum-based stopping criterion terminated the estimation earlier
(on average 3 sequences) compared to the fix threshold, with marginal accuracy loss.

4.2 Human-in-the-Loop Experiments: Copy Phrase Task

The calibration session proceeds with a short break (10 minutes) followed by four Copy phrase tasks
including typing six introduced phrases with different typing difficulty levels. In this experiment,
τ = 85% and maximum number of sequences for typing a letter is 50. Each user participates four
copy phrase tasks with different methods including random, Momentum, MMI, and the proposed
framework. In the random method, the subset of queries was selected randomly and the stopping
criterion was based on the fix threshold. In the Momentum method, the query selection was only using
Momentum objective and the stopping criterion was based on the Momentum measure. For MMI,
the query selection was based on mutual information and the stopping criterion is the conventional
fix threshold. In the proposed one, we used the proposed objectives introduced in (13). The order
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of the tasks was randomly assigned to the participants to avoid the learning effect on the typing
performance.

Table 2 shows the average typing performances of each user using different querying and stopping
approaches. In this table, we reported the typing performance in terms of four measures: AUC of the
classifier (trained using the calibration data); accuracy in typing a letter correctly (ATL) that is the
total number of correctly typed letters divided by the total number of typed letters; accuracy of the
phrase completion (APC) which is the average ATL for completed phrases; and probability of the
phrase completion (PPC) that is total number of correctly typed phrases divided by the total number
of phrases.

As another typical evaluation metric for BCI typing systems, we used information transfer rate
(ITR) [18], which presents the information common to both the user intent σ and estimated symbol
σ̂. In fact, ITR summarizes the accuracy and speed into a single metric and it is commonly used to
measure typing performance. Figure 6 illustrates the ITR values for all users sorted according to their
calibration session AUC values.

Table 3 shows the average typing performance of all estimation methods for all users for copy phrase
sessions. It shows the proposed framework outperforms the other methods in terms of speed and
accuracy measures. Our statistical analysis also shows that the proposed framework significantly
improved typing performance compared to MMI and random query selection (p < 0.02 based
on Wilcoxon signed-rank test), which includes at least 52% enhancement for ITR, 30% for speed
(1/Numseq), and 8.2% for ATL. Table 4 includes a summary of comparison between results reported
in six different studies and results of the proposed framework in this study. The reported average ITR
for the proposed method is much higher than reported ITRs for the other studies, which presents the
impact of the proposed query selection and the stopping criterion methods on ITR values. We note
that not all of these studies used RSVP-based BCI spellers; Only studies [4] and [16] used a similar
RSVP presentation paradigm to what we have used in this paper and other studies employed either
matrix speller or multi-RSVP paradigm.

5 Conclusion

A new recursive state estimation framework has been proposed for the non-invasive EEG-based
BCI typing systems to enhance the typing speed and accuracy. The intended symbol estimation
requires a selection of queries to be presented to the user, which can be formulated as a RSE problem.
Taking advantages of posterior probability changes due to asking different questions across sequences,
we introduce an active RSE framework for inference and sequence optimization by expanding the
Momentum function proposed for active query optimization. To assess the proposed framework
performance, a language-model-assisted EEG-based BCI typing system called RSVP Keyboard
has been used. Using RSVP paradigm of this typing system, we examine the performance of the
framework in both simulation and copy phrase modes. Our results showed that using Momentum
jointly as stopping criterion and query optimization provides higher probability in picking the target
letter that can lead to higher accuracy and speed in typing, especially in typing unlikely words.
Our results for both simulation and copy phrase experiments showed that the proposed framework
significantly outperforms the alternative estimation approaches.
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Table 1: Summary of the frequently used notation.

Notation Definition
σ user intended symbol
A finite set of typing symbols including alphabet, space and backspace
Φs subset of queries (visual stimuli) at sequence s
φis single query at trail i, sequence s
εs recorded EEG at sequence s
H0 previously typed symbols (if exists)
p(σ|H0) prior information provided by the LM
Hs task history including {ε1:s,Φ1:s,H0}
I(σ, ε) mutual information between the user intent and collected EEG
M(σ|Hs) Momentum function
τ minimum confidence level for typing a symbol
λ hyperparameter of the typing framework
S total number of sequences
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Table 2: Typing performance for 10 participants performing RSVP Keyboard task using four estimation
approaches. AUCca represents the AUC value for the calibration task and AUCcp presents the AUC value of the
copy phrase task.

Random Momentum MMI Proposed
User AUCca AUCcp ATL APC PPC AUCcp ATL APC PPC AUCcp ATL APC PPC AUCcp ATL APC PPC

1 0.67 0.90 0.22 0.00 0.00 0.89 0.49 0.75 0.50 0.91 0.63 0.73 0.67 0.89 0.69 1.00 0.67

2 0.79 0.96 0.49 0.43 0.17 0.93 0.84 0.69 1.00 0.95 0.75 0.88 0.83 0.95 0.97 0.95 1.00

3 0.79 0.96 0.77 0.62 0.50 0.95 0.71 0.64 0.83 0.91 0.81 0.61 1.00 0.87 0.79 0.57 1.00

4 0.78 0.95 0.18 0.01 0.00 0.93 0.76 0.49 1.00 0.85 0.68 0.53 0.83 0.88 0.67 0.73 0.67

5 0.80 0.76 0.28 0.60 0.33 0.75 0.62 0.70 0.50 0.83 0.71 0.82 0.83 0.76 0.83 1.00 0.83

6 0.77 0.75 0.12 0.00 0.00 0.83 0.51 0.82 0.33 0.86 0.66 1.00 0.67 0.85 0.70 0.76 0.67

7 0.82 0.94 0.18 0.00 0.00 0.92 0.82 0.64 1.00 0.92 0.76 0.88 0.83 0.90 0.73 0.82 0.83

8 0.75 0.91 0.26 0.00 0.00 0.90 0.83 0.74 0.83 0.89 0.77 0.49 1.00 0.82 0.86 0.71 1.00

9 0.69 0.76 0.04 0.00 0.00 0.69 0.85 0.59 0.50 0.83 0.58 0.60 0.50 0.85 0.64 0.85 0.67

10 0.72 0.90 0.21 1.00 0.17 0.89 0.48 1.00 0.33 0.92 0.55 0.80 0.50 0.92 0.61 1.00 0.67
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Table 3: Average typing performance across all participants performing RSVP Keyboard task using four
estimation approaches. The reported average values for Random and Momentum belong to cases that the
participant completed the task before reaching the maximum number of sequences (mandatory termination).

Random Momentum MMI Proposed
ITR (bits/min) 03.6 18.6 21.6 34.8

NumSeq 45 38 31 24
ATL 0.28 0.69 0.69 0.75
APC 0.27 0.71 0.73 0.84
PPC 0.12 0.68 0.77 0.80
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Table 4: Comparing the performance of the proposed typing framework with other BCI spellers using EEG
measurement and different stimuli paradigms.

Method Paradigm # Subjects(# Healthy) ITR [bits/min]
McFarland’s work [19] Matrix 8 (6) 08.4
Orhan’s work [16] RSVP 12 (10) 09.6
Moghadamfalahi’s work [4] RSVP 12 (12) 16.2
Donchin’s work [20] Matrix 10 (10) 19.8
Lin’s work [21] 3-RSVP 13 (13) 20.4
Serby’s work [22] Matrix 6 (6) 22.2
Our work RSVP 10 (10) 34.8
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Figure Captions

Figure 1: The graphical representation of recursive state estimation for BCI-based typing systems. The dynamics
of the system follows a Markov decision process. σ denotes the state, εs,Φs represent observed evidence and
queries for sequence s respectively. δ0 denotes the prior information before the typing (e.g. language model).

Figure 2: (a) Schematic illustration of three presentation paradigms in RSVP Keyboard system. The system
has three present modalities including RSVP speller, single letter matrix speller and row-column flash matrix
speller.(b) Copy phrase task for EEG-based BCI using RSVP paradigm. The user is presented by a pre-determined
phrase and tasked to complete it. In the example the user is tasked to type ARCTIC.

Figure 3: Experimental results obtained from one of our subjects for the typing tasks “are, annals, arctic, too,
convalesce”. The figure represents the prior probabilities provided by the language model (LM) (blue) and the
posterior probabilities when the decision is made (red). The differences between the bars are the results of the
user’s EEG response. It is apparent from the figure EEG drives the selection.

Figure 4: Probability of the letter completion for 500 Monte-Carlo simulations for typing three target symbols in
phrase ‘CONVALESCE’. Intended symbols contain: (a)‘C’, (b)‘O’, and (c) ‘N’ in the target phrase. Simulation
results are reported for two users with different calibration performances. User 7 with AUC = 0.82 has lower
performance than user 1 with AUC = 0.67. Bar plots show the LM prior probability over all typing symbols
before typing each letter.

Figure 5: Probability of the letter completion for 500 Monte-Carlo simulations for typing a single letter using
four query optimization methods and two stopping criteria. (a) Simulation results for random querying using
fix threshold and the Momentum-based stopping criteria. (b) Simulation results for Momentum querying using
fix threshold and the Momentum-based stopping criteria. (c) Simulation results for MMI querying using fix
threshold and the Momentum-based stopping criteria. (d) Simulation results for the proposed querying using fix
threshold and the Momentum-based stopping criteria. In all sub-figures, the top plot belongs to User 7 with AUC
= 0.82 and the bottom plot belongs to User 1 with AUC = 0.67. Dots presents the stopping point according to
each criterion.

Figure 6: Average of information transfer rate for four query selection methods: Random (red), Momentum
(black), MMI (green), and the proposed framework (blue). All of the results belongs to 10 users attending the
copy phrase task in RSVP Keyboard experiment.
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